天才学霸?我只是天生爱学习 第273节
地理2级(0%)
历史2级(0%)
政治4级(9%)】
这些天因为专注于数学,数学熟练度提升很是不错,物理就几乎没怎么涨,语文英语化学也都只有小幅度提升,倒是拿了郭嘉自然科学奖后,政治熟练度直接飙升到了4级,成为了陈辉第三门4级学科。
再看了看基础属性面板后,陈辉就收敛心神,继续研读桌上的论文来。
他并不知道网络上的舆论,但他知道,完成杨米尔斯方程的完整证明不过是他人生路上的一小步,前方依旧有无数座山峰等待着他去攀登,现在还不是休息的时候。
倒是这几天他又收到了克雷研究所的邮件,邀请他去巴黎的法兰西公学院领取克雷研究所的大奖。
克雷研究所总部在米国马萨诸塞州剑桥市,但七大千禧年难题在法兰西公学院首次发布,当年佩雷尔曼证明庞加莱猜想后,克雷研究所为他选定的颁奖地址也是在巴黎的法兰西公学院。
如果是米国的话,陈辉可能就不去了,太远,浪费时间,但巴黎,正好他还要去领拉马努金奖和参加IMO金牌选手的颁奖典礼,既然顺路,陈辉自然不会拒绝。
回复邮件后,陈辉再次看向面前自己研究的问题。
这些天,他与丹尼斯教授分别从复几何和拓扑的角度研究NS方程,但都遇到了瓶颈,丹尼斯苦恼于如何严格描述涡管拓扑随时间的“弹性”变化及其与能量耗散的关联。
陈辉则思考如何将抽象的纤维丛结构与实际的涡旋动力学对应起来。
前几天丹尼斯就联系他了,说是这几天会来江城大学找他,在江城大学访问交流一段时间,同时也将自己遇到的困难告诉了陈辉。
这几天陈辉除了思考自己的问题,也在试图解决丹尼斯的问题,他的拓扑学得也还不错。
“嘿,辉,恭喜你!”
忽然,一道爽朗的声音从身后传来,丹尼斯正满面笑容的站在办公室门口,扔下手中的行李箱,张开双手准备给陈辉一个熊抱。
“有什么值得恭喜的?我的问题还没解决,所以,你的问题解决了?”
陈辉好奇又期待的问道,他没有从丹尼斯脸上看到半点被难题困扰的沮丧,看他这模样,不知道的还以为他已经证明NS方程了呢。
丹尼斯笑着摇头,“当然没有。”
“但是你证明了杨米尔斯方程,这难道不值得恭喜吗?”
“你们华夏人总是这样,对自己要求太高,这样不好!”
丹尼斯显然跟不少华夏学者都合作过,不由得吐槽到,“NS方程这样的难题,需要很多数学家用一生去破解,短时间内遇到困难是很正常的,反而出成果是难得的。”
“当你决定用几十年的时间去解决某个问题,那么一时的得失就不重要了,反而是保持好的心态,保证自己的身心健康,数十年如一日的去钻研,才能有所得。”
“否则,身体垮了,那可就什么都没用了。”
“我的朋友,你明白吗?”
“你是我见过最厉害的天才,我相信,我们合作,最后一定能够证明这道难题,我可不想你倒在了半路上。”
陈辉哭笑不得,“谢谢你,丹尼斯,放心吧,我不会倒在半路的。”
对于其他人来说,破解NS方程或许需要数十年,但陈辉有把握,在几年之内完成证明。
“丹尼斯教授需要先休息一下吗?我们已经给您安排好了酒店。”
王启明在旁边说道。
丹尼斯这次可是正式给江城大学发出申请,来做一段时间的访问学者。
对于丹尼斯这样的大佬,江城大学自然没有拒绝的理由,当即同意。
“不用,我还有些问题想要跟辉讨论。”
他来华夏是参加某个会议的,已经倒完时差,飞往江城时在飞机上睡了一觉,现在并没有感觉很累,或者说,能够在某一个行业做到顶级的,无一不是精力旺盛之人。
嘴上说着不着急,身体倒是很诚实。
陈辉莞尔一笑,拉出办公室中的白板,开始在上面书写涡度方程ω/t +(u·)ω=(ω·)u +νΔω,丹尼斯则是在旁边画出了纠缠涡管示意图……
“。。”
王启明翻了个白眼,得,这两个家伙直接把他当成空气了。
他也没有大套两人,走出办公室时顺便带上了门,上面还挂着当时蔻依写的那张纸——闭关中,请勿打扰。
第227章 解开NS方程的钥匙
办公室中,陈辉两人激烈的讨论着,虽然不断有新的灵感迸发,但两个关键问题却一直无法解决。
一阵激烈的讨论之后,办公室中再次陷入沉寂,两人都看着白板,陷入了沉思。
两人已经困在这个问题上有一段时间了,想要短时间内解决的可能性已经不大了。
丹尼斯遗憾的指着白板上的涡度方程旁边画的纠缠涡管示意图:“看,涡管像橡皮筋,拉伸、扭转、甚至断裂重联,拓扑的辫群、同调类能描述状态,但怎么刻画这种‘形变’过程本身?直接对应到方程右边这些项……”
陈辉看着涡管图,又看看自己笔记本上画的纤维丛联络示意图,忽然脑中闪过一道灵光,“形变?纤维丛的联络定义了平行移动,本质上描述了纤维如何随底流形变化,如果我们把涡线看作纤维丛的纤维……”
丹尼斯眼睛一亮,立刻在白板上画了一个扭曲的圆柱体(平凡丛的变形),“就像这样!底空间是流体域,纤维是涡线方向,但NS方程驱动的形变太剧烈,普通的联络……”
陈辉断他,语速加快:“普通的联络可能不够!但如果我们考虑带‘挠率’的联络,在广义相对论里,挠率可以描述微观结构的畸变,在这里,挠率也许能刻画涡管拉伸、扭转导致的局部旋转效应,这直接对应(ω·)u项!”
丹尼斯猛地拍了下桌子,发出一声巨响,咖啡杯晃了晃:“挠率!对!(ω·)u就是涡度被速度梯度‘拖着走’,产生旋转和变形,这本质上是非完整位移,正是挠率描述的对象!把涡旋丛的联络定义成带特定挠率的形式……天啊,这可能是个框架!”
两人都沉默了十几秒,快速在各自的笔记本上写着关键公式和草图,空气中只有笔尖摩擦纸张的沙沙声。
一阵推演之后,两人几乎同时抬起头,都从对方眼中看到了璀璨的光芒。
他们很可能无意间推开了一扇崭新的大门,一扇通往NS方程奥秘的终极之门。
定义涡旋纤维丛E,底空间M流体域,纤维≈vortex line direction,联络包含挠率张量T,设计T以匹配涡度输运方程中的形变项(ω·)u……
丹尼斯补充,“关键在于如何将物理的涡度场ω和速度场u映射到这个几何结构上,ω应该关联到纤维的方向,截面?,u定义了底空间的移动,形变(ω·)u被编码到联络的挠率部分T。”
各自推演之后,两人再次进行激烈的讨论,很多时候就是如此,他们或许会因为一个瓶颈困住好几年,可一旦捅破这层纸,接下来便能水到渠成,势如破竹。
“我们需要一个映射,将物理的u提升为丛上的一个‘水平提升,这个提升定义的平行移动,其产生的挠率效应,要能精确对应(ω·)u对涡线方向的改变。”
陈辉在白板上做出自己的补充。
丹尼斯点头,擦掉部分白板,开始画一个更复杂的示意图,底空间、纤维、一个代表u的向量场、以及它在丛上引起的“流动”路径,“这个提升映射需要满足相容性条件,也许可以从涡度守恒或亥姆霍兹定理出发来定义它?”
陈辉眼前一亮,“对!亥姆霍兹定理说涡管随流体运动,这正是纤维丛中‘联络’定义平行移动的核心思想——保持纤维‘不变’,对应此处的涡管物质性,我们可以利用这个来构造那个提升映射!”
接下来的几小时,两人在白板前激烈讨论,不断定义、否定、修正数学对象,丛的结构群、联络形式ω、曲率Ω、挠率T的显式表达。
草稿纸堆满了桌面。
核心任务是将ω/t+(u·)ω-νΔω=(ω·)u这个物理方程,转化为他们定义的涡旋丛上的某个几何方程。
晚上十点,陈辉办公室外,
王启明看着紧闭的大门,还有从门内时不时传来的激烈交流声,一阵忧愁。
丹尼斯是来江城大学访问交流的学者,同时也是数学界德高望重的前辈,本身更是六十多岁的高龄,这两个家伙一讨论就是七八个小时。
要是丹尼斯出了什么问题,他们江城大学可不好交代。
但他也不敢这个时候敲门进去,他知道两人在讨论什么东西,万一因为自己的打扰,让两人断了灵感,那罪过可就大了。
一时间,站在门外的王启明进退两难。
办公室内,一直到凌晨三点,激烈讨论的两人停了下来,相视一笑,然后哈哈大笑起来。
这个框架的构建距离彻底解决NS方程或许还有很长的距离,但光是这个框架,就已经是他们智慧碰撞结出的第一个重要果实。
使用这个框架可以潜在绕过某些奇点、统一描述拓扑变化,可以用来连接量子拓扑方法,或者应用于特定湍流结构分析。
“你真是个天才!”
丹尼斯由衷感叹到,“当初与你合作,是我这辈子做过最英明的决定!”
“没有你我也无法完成这个工作!”
陈辉也开心的笑道,“丹尼斯,你在拓扑上的研究和直觉有很多我需要学习的地方。”
“哈哈,我们就不要互相吹捧了。”
丹尼斯兴奋得手舞足蹈,“我们可以整理一下,这个框架也足以发表一篇顶刊,或许能对其他人也有些帮助。”
“至于我们接下来,就是利用这个框架去破解NS方程了。”
“辉,你可能会成为这个世界上唯一一个破解两道千禧年难题的人了!”
陈辉摇头,“现在说破解NS方程还为时尚早,丹尼斯,你应该去休息了。”
他可没有半场开香槟的习惯,并且,凌晨三点对他来说不过是家常便饭,但丹尼斯已经六十多岁,这经不起这般折腾。
“哈哈哈,放心吧,老头子我身体硬朗着呢!”
丹尼斯摆摆手,他平时可是很注重锻炼的,偶尔熬熬夜,无妨。
不过他也的确该休息了。
推开办公室门,
“王院长,你这是?”
看着站在办公室外的王启明,丹尼斯有些莫名其妙。
现在可是凌晨三点啊!
“丹尼斯教授,走吧,我带你去休息的地方。”
王启明谢天谢地,看到丹尼斯没事儿他悬着的心也终于放了下来。
上一篇:大司农:我真不想种田的
下一篇:开局一只猴?放肆!叫大圣!